เครื่องคำนวณอัตราที่กำหนด
คำนวณอัตราดอกเบี้ยเงินกู้ต่อปี (APR) จากอัตราดอกเบี้ยที่แท้จริงต่อปี (APY/EAR) พร้อมสูตรแสดงวิธีทำทีละขั้นตอน แผนภูมิเปรียบเทียบความถี่ในการทบต้น และการวิเคราะห์เพื่อการศึกษาสำหรับผู้เชี่ยวชาญด้านการเงินและนักศึกษา
ตัวบล็อกโฆษณาของคุณทำให้เราไม่สามารถแสดงโฆษณาได้
MiniWebtool ให้ใช้งานฟรีเพราะมีโฆษณา หากเครื่องมือนี้ช่วยคุณได้ โปรดสนับสนุนเราด้วย Premium (ไม่มีโฆษณา + เร็วขึ้น) หรืออนุญาต MiniWebtool.com แล้วรีโหลดหน้าเว็บ
- หรืออัปเกรดเป็น Premium (ไม่มีโฆษณา)
- อนุญาตโฆษณาสำหรับ MiniWebtool.com แล้วรีโหลด
เกี่ยวกับ เครื่องคำนวณอัตราที่กำหนด
ยินดีต้อนรับสู่ เครื่องคำนวณอัตราที่กำหนด เครื่องมือทางการเงินระดับมืออาชีพที่แปลงอัตราดอกเบี้ยที่แท้จริงรายปี (APY/EAR) เป็นอัตราดอกเบี้ยที่กำหนดรายปี (APR) ไม่ว่าคุณจะเป็นผู้เชี่ยวชาญด้านการเงิน นักเรียน นักลงทุน หรือผู้กู้ที่กำลังเปรียบเทียบเงื่อนไขเงินกู้ เครื่องคำนวณนี้จะให้การแปลงที่แม่นยำพร้อมการแยกสูตรทีละขั้นตอน แผนภูมิเปรียบเทียบเชิงโต้ตอบ และเนื้อหาเพื่อการศึกษาที่ครอบคลัน
อัตราดอกเบี้ยที่กำหนดคืออะไร?
อัตราดอกเบี้ยที่กำหนด หรือที่รู้จักในชื่อ Annual Percentage Rate (APR) คืออัตราดอกเบี้ยรายปีที่ระบุไว้ก่อนคำนวณผลของการทบต้น ซึ่งแสดงถึงอัตราดอกเบี้ยรายปีแบบธรรมดาโดยไม่พิจารณาว่ามีการคำนวณดอกเบี้ยและบวกเข้ากับเงินต้นบ่อยเพียงใด
ในบริบททางการเงิน "ที่กำหนด" (Nominal) หมายถึง "เพียงแต่ชื่อ" อัตรานี้ถูกระบุไว้แต่ไม่ได้สะท้อนถึงต้นทุนหรือผลตอบแทนที่แท้จริงเมื่อมีการทบต้นมากกว่าหนึ่งครั้งต่อปี ธนาคารและผู้ให้กู้มักโฆษณาด้วยอัตราที่กำหนด แต่อัตราผลตอบแทนหรือต้นทุนที่แท้จริงอาจแตกต่างออกไป
อัตราที่กำหนด vs อัตราที่แท้จริง
| คุณลักษณะ | อัตราที่กำหนด (APR) | อัตราที่แท้จริง (APY/EAR) |
|---|---|---|
| คำจำกัดความ | อัตรารายปีที่ระบุไว้ | อัตรารายปีที่แท้จริงหลังการทบต้น |
| การทบต้น | ไม่นำมาพิจารณา | รวมผลของการทบต้นแล้ว |
| การใช้งานทั่วไป | เงินกู้, สินเชื่อที่อยู่อาศัย, บัตรเครดิต | บัญชีออมทรัพย์, การลงทุน |
| การเปรียบเทียบ | น้อยกว่าหรือเท่ากับอัตราที่แท้จริงเสมอ | มากกว่าหรือเท่ากับอัตราที่กำหนดเสมอ |
สูตรการคำนวณ
การแปลงอัตราที่แท้จริงเป็นอัตราที่กำหนด (ทบต้นตามงวด)
สำหรับดอกเบี้ยที่มีการทบต้น n ครั้งต่อปี:
โดยที่:
- i = อัตราดอกเบี้ยที่กำหนดรายปี
- r = อัตราดอกเบี้ยที่แท้จริงรายปี (ในรูปทศนิยม)
- n = จำนวนงวดการทบต้นต่อปี
การแปลงอัตราที่แท้จริงเป็นอัตราที่กำหนด (ทบต้นแบบต่อเนื่อง)
เมื่อการทบต้นเข้าใกล้ค่าอนันต์ (การทบต้นแบบต่อเนื่อง):
โดยที่ ln คือฟังก์ชันลอการิทึมธรรมชาติ
วิธีใช้งานเครื่องคำนวณนี้
- กรอกอัตราที่แท้จริง: ใส่อัตราดอกเบี้ยที่แท้จริงรายปี (APY หรือ EAR) เป็นเปอร์เซ็นต์ ซึ่งเป็นอัตราจริงที่คุณได้รับหรือจ่ายหลังการทบต้น
- เลือกความถี่ในการทบต้น: เลือกความถี่ที่ดอกเบี้ยทบต้น - รายปี, รายครึ่งปี, รายไตรมาส, รายเดือน, รายสัปดาห์, รายวัน หรือต่อเนื่อง
- กำหนดความแม่นยำ: เลือกตำแหน่งทศนิยมสำหรับผลลัพธ์ (2-10)
- คำนวณ: คลิกปุ่มเพื่อดูอัตราที่กำหนด การคำนวณทีละขั้นตอน และการเปรียบเทียบในทุกความถี่การทบต้น
ความถี่ในการทบต้นที่พบบ่อย
| ความถี่ | งวดต่อปี (n) | การใช้งานทั่วไป |
|---|---|---|
| รายปี | 1 | เงินกู้แบบธรรมดา, พันธบัตรบางประเภท |
| รายครึ่งปี | 2 | หุ้นกู้เอกชน, พันธบัตรรัฐบาล |
| รายไตรมาส | 4 | บัญชีออมทรัพย์บางประเภท, เงินปันผล |
| รายเดือน | 12 | สินเชื่อที่อยู่อาศัย, สินเชื่อรถยนต์, บัตรเครดิตส่วนใหญ่ |
| รายสัปดาห์ | 52 | เงินกู้ระยะสั้นบางประเภท |
| รายวัน | 365 | บัญชีออมทรัพย์, ตลาดเงิน |
| ต่อเนื่อง | ∞ | เชิงทฤษฎี, การกำหนดราคาตราสารอนุพันธ์ |
ทำความเข้าใจผลลัพธ์
ทำไมอัตราที่กำหนดจึงต่ำกว่า?
อัตราที่กำหนดจะน้อยกว่าหรือเท่ากับอัตราที่แท้จริงเสมอ (จะเท่ากันเฉพาะการทบต้นรายปีเท่านั้น) เนื่องจากมีการ "ทบดอกเบี้ยเข้ากับดอกเบี้ย" เมื่อดอกเบี้ยถูกเพิ่มเข้าไปในเงินต้น การคำนวณดอกเบี้ยครั้งต่อไปจะรวมเงินส่วนที่เพิ่มขึ้นนั้นไปด้วย
ด้วยความถี่ในการทบต้นที่มากขึ้น ผลกระทบนี้จะเพิ่มขึ้น ทำให้ช่องว่างระหว่างอัตราที่กำหนดและอัตราที่แท้จริงกว้างขึ้น นี่คือเหตุผลว่าทำไมอัตราที่กำหนดที่เท่ากันจึงให้ผลลัพธ์เป็นอัตราที่แท้จริงที่แตกต่างกัน ขึ้นอยู่กับความถี่ในการทบต้น
การนำไปใช้งานจริง
- การเปรียบเทียบเงินกู้: เมื่อเปรียบเทียบเงินกู้ที่มีความถี่การทบต้นต่างกัน ให้แปลงทุกอัตราให้อยู่ในฐานเดียวกัน (อาจจะเป็นแบบกำหนดทั้งหมดหรือแบบแท้จริงทั้งหมด) เพื่อความแม่นยำ
- การวิเคราะห์การลงทุน: หากคุณทราบอัตราผลตอบแทนที่แท้จริงที่ต้องการ คุณสามารถคำนวณอัตราที่กำหนดที่จำเป็นสำหรับผลิตภัณฑ์การลงทุนเฉพาะของคุณได้
- การวางแผนทางการเงิน: การเข้าใจความสัมพันธ์นี้ช่วยในการจัดงบประมาณสำหรับต้นทุนดอกเบี้ยหรือรายได้ที่แท้จริง
คำถามที่พบบ่อย
อัตราดอกเบี้ยที่กำหนดและอัตราดอกเบี้ยที่แท้จริงแตกต่างกันอย่างไร?
อัตราดอกเบี้ยที่กำหนด (APR) คืออัตรารายปีที่ระบุไว้ก่อนคำนวณผลของการทบต้น อัตราดอกเบี้ยที่แท้จริง (APY/EAR) คืออัตรารายปีที่แท้จริงหลังการทบต้น ตัวอย่างเช่น อัตราที่กำหนด 12% ทบต้นรายเดือนจะให้ผลตอบแทนเป็นอัตราที่แท้จริงประมาณ 12.68% ส่วนต่างนี้จะเพิ่มขึ้นตามความถี่ของการทบต้นที่มากขึ้น
ฉันจะแปลงอัตราดอกเบี้ยที่แท้จริงเป็นอัตราที่กำหนดได้อย่างไร?
ในการแปลงอัตราที่แท้จริงเป็นอัตราที่กำหนด ให้ใช้สูตร: i = n × ((1 + r)^(1/n) - 1) โดยที่ i คืออัตราที่กำหนด, r คืออัตราที่แท้จริงในรูปทศนิยม และ n คือจำนวนงวดการทบต้นต่อปี สำหรับการทบต้นแบบต่อเนื่อง ให้ใช้ i = ln(1 + r)
การทบต้นแบบต่อเนื่องคืออะไร?
การทบต้นแบบต่อเนื่องเป็นแนวคิดทางทฤษฎีที่มีการคำนวณและบวกดอกเบี้ยเข้ากับเงินต้นเป็นจำนวนครั้งไม่สิ้นสุดต่อปี ซึ่งแสดงถึงขีดจำกัดทางคณิตศาสตร์ของความถี่ในการทบต้น สูตรใช้ลอการิทึมธรรมชาติ: อัตราที่กำหนด = ln(1 + อัตราที่แท้จริง) มักใช้ในการจำลองทางการเงินขั้นสูงและการกำหนดราคาตราสารอนุพันธ์
ทำไมอัตราที่กำหนดจึงต่ำกว่าอัตราที่แท้จริงเสมอ?
อัตราที่กำหนดจะต่ำกว่า (หรือเท่ากับ) อัตราที่แท้จริงเสมอ เพราะการทบต้นทำให้เกิดรายได้ส่วนเพิ่มจากดอกเบี้ยที่ได้รับไปแล้ว หากทบต้นรายปี ทั้งสองอัตราจะเท่ากัน แต่หากทบต้นบ่อยขึ้น อัตราที่แท้จริงจะสูงกว่าอัตราที่กำหนดเพราะคุณได้รับ "ดอกเบี้ยจากดอกเบี้ย" ตลอดทั้งปี
ฉันควรใช้ความถี่ในการทบต้นเท่าใด?
ความถี่ในการทบต้นควรตรงกับความถี่ที่สถาบันการเงินของคุณทบต้นดอกเบี้ยจริง บัญชีออมทรัพย์ส่วนใหญ่มักทบต้นรายวัน สินเชื่อที่อยู่อาศัยมักทบต้นรายเดือน และพันธบัตรมักทบต้นรายครึ่งปี ตรวจสอบเงื่อนไขบัญชีหรือสัญญาเงินกู้ของคุณเพื่อหาความถี่ที่ถูกต้อง
เครื่องคำนวณที่เกี่ยวข้อง
- เครื่องคำนวณอัตราดอกเบี้ยที่แท้จริง - แปลงอัตราที่กำหนดเป็นอัตราที่แท้จริง
- เครื่องคำนวณดอกเบี้ยทบต้น - คำนวณมูลค่าในอนาคตด้วยดอกเบี้ยทบต้น
- เครื่องคำนวณ APR - คำนวณอัตราเปอร์เซ็นต์รายปีสำหรับเงินกู้
แหล่งข้อมูลเพิ่มเติม
อ้างอิงเนื้อหา หน้าหรือเครื่องมือนี้ว่า:
"เครื่องคำนวณอัตราที่กำหนด" ที่ https://MiniWebtool.com/th/เครองคำนวณอตราทกำหนด/ จาก MiniWebtool, https://MiniWebtool.com/
โดยทีม miniwebtool อัปเดตเมื่อ: 2 ก.พ. 2026