Calculatrice de fonction d'erreur complémentaire
Calculez la fonction d'erreur complémentaire.
Embed Calculatrice de fonction d'erreur complémentaire Widget
Calculatrice de fonction d'erreur complémentaire
Le Calculateur de fonction d'erreur complémentaire permet de calculer la fonction d'erreur complémentaire d'un nombre donné.
Fonction d'erreur complémentaire
En mathématiques, la fonction d'erreur complémentaire (aussi appelée fonction d'erreur complémentaire de Gauss) est définie comme :
Table de fonctions d'erreur complémentaire
Le tableau suivant présente la fonction d'erreur et la fonction d'erreur complémentaire qui montre les valeurs de erf(x) et erfc(x) pour x allant de 0 à 3,5 avec un incrément de 0,01.
X | erf (x) | erfc (x) |
---|---|---|
0.0 | 0.0 | 1,0 |
0,01 | 0.011283416 | 0,988716584 |
0,02 | 0.022564575 | 0,977435425 |
0,03 | 0.033841222 | 0,966158778 |
0,04 | 0.045111106 | 0.954888894 |
0,05 | 0,056371978 | 0,943628022 |
0,06 | 0.067621594 | 0,932378406 |
0,07 | 0,07885772 | 0,92114228 |
0,08 | 0.090078126 | 0.909921874 |
0,09 | 0,101280594 | 0.898719406 |
0,1 | 0.112462916 | 0.887537084 |
0,11 | 0,123622896 | 0.876377104 |
0,12 | 0.134758352 | 0.865241648 |
0,13 | 0.145867115 | 0.854132885 |
0,14 | 0,156947033 | 0.843052967 |
0,15 | 0.167995971 | 0.832004029 |
0,16 | 0,179011813 | 0.820988187 |
0,17 | 0,189992461 | 0.810007539 |
0,18 | 0.200935839 | 0.799064161 |
0,19 | 0.211839892 | 0,788160108 |
0,2 | 0.222702589 | 0,777297411 |
0,21 | 0.233521923 | 0,766478077 |
0,22 | 0.244295912 | 0,755704088 |
0,23 | 0.2550226 | 0,7449774 |
0.24 | 0,265700059 | 0,734299941 |
0,25 | 0.27632639 | 0,72367361 |
0,26 | 0,286899723 | 0,713100277 |
0,27 | 0.297418219 | 0,702581781 |
0,28 | 0,307880068 | 0,692119932 |
0,29 | 0.318283496 | 0.681716504 |
0,3 | 0,328626759 | 0,671373241 |
0,31 | 0,33890815 | 0,66109185 |
0,32 | 0.349125995 | 0.650874005 |
0,33 | 0,359278655 | 0.640721345 |
0,34 | 0,369364529 | 0.630635471 |
0,35 | 0.379382054 | 0.620617946 |
0,36 | 0,389329701 | 0.610670299 |
0,37 | 0.399205984 | 0.600794016 |
0,38 | 0.409009453 | 0.590990547 |
0,39 | 0,4187387 | 0.5812613 |
0.4 | 0,428392355 | 0.571607645 |
0,41 | 0.43796909 | 0.56203091 |
0.42 | 0.447467618 | 0.552532382 |
0.43 | 0,456886695 | 0.543113305 |
0,44 | 0.466225115 | 0.533774885 |
0,45 | 0.47548172 | 0.52451828 |
0,46 | 0,48465539 | 0.51534461 |
0,47 | 0.493745051 | 0.506254949 |
0,48 | 0.502749671 | 0.497250329 |
0,49 | 0.511668261 | 0,488331739 |
0.5 | 0.520499878 | 0.479500122 |
0,51 | 0.52924362 | 0.47075638 |
0,52 | 0.53789863 | 0.46210137 |
0,53 | 0.546464097 | 0.453535903 |
0,54 | 0.55493925 | 0.44506075 |
0,55 | 0.563323366 | 0,436676634 |
0,56 | 0.571615764 | 0.428384236 |
0,57 | 0.579815806 | 0.420184194 |
0,58 | 0.5879229 | 0.4120771 |
0,59 | 0.595936497 | 0.404063503 |
0.6 | 0.603856091 | 0.396143909 |
0,61 | 0,611681219 | 0,388318781 |
0,62 | 0,619411462 | 0.380588538 |
0,63 | 0.627046443 | 0,372953557 |
0,64 | 0.634585829 | 0.365414171 |
0,65 | 0.642029327 | 0,357970673 |
0,66 | 0,649376688 | 0.350623312 |
0,67 | 0.656627702 | 0,343372298 |
0,68 | 0.663782203 | 0,336217797 |
0,69 | 0.670840062 | 0.329159938 |
0,7 | 0,677801194 | 0.322198806 |
0,71 | 0,68466555 | 0,31533445 |
0,72 | 0.691433123 | 0,308566877 |
0,73 | 0,698103943 | 0,301896057 |
0,74 | 0,704678078 | 0.295321922 |
0,75 | 0,711155634 | 0,288844366 |
0,76 | 0,717536753 | 0,282463247 |
0,77 | 0,723821614 | 0.276178386 |
0,78 | 0,730010431 | 0.269989569 |
0,79 | 0,736103454 | 0.263896546 |
0.8 | 0.742100965 | 0.257899035 |
0,81 | 0,748003281 | 0.251996719 |
0,82 | 0.753810751 | 0.246189249 |
0,83 | 0,759523757 | 0.240476243 |
0,84 | 0,765142711 | 0.234857289 |
0,85 | 0,770668058 | 0.229331942 |
0,86 | 0,776100268 | 0.223899732 |
0,87 | 0,781439845 | 0.218560155 |
0,88 | 0,786687319 | 0.213312681 |
0,89 | 0.791843247 | 0,208156753 |
0,9 | 0,796908212 | 0.203091788 |
0,91 | 0.801882826 | 0.198117174 |
0,92 | 0.806767722 | 0,193232278 |
0,93 | 0.811563559 | 0.188436441 |
0,94 | 0.816271019 | 0,183728981 |
0.95 | 0.820890807 | 0,179109193 |
0,96 | 0.82542365 | 0,17457635 |
0,97 | 0.829870293 | 0,170129707 |
0,98 | 0.834231504 | 0.165768496 |
0,99 | 0.83850807 | 0,16149193 |
1,0 | 0.842700793 | 0,157299207 |
1,01 | 0.846810496 | 0.153189504 |
1,02 | 0.850838018 | 0.149161982 |
1,03 | 0.854784211 | 0.145215789 |
1.04 | 0.858649947 | 0,141350053 |
1,05 | 0.862436106 | 0,137563894 |
1,06 | 0.866143587 | 0.133856413 |
1,07 | 0.869773297 | 0.130226703 |
1,08 | 0.873326158 | 0,126673842 |
1,09 | 0.876803102 | 0.123196898 |
1.1 | 0.88020507 | 0.11979493 |
1.11 | 0.883533012 | 0,116466988 |
1,12 | 0.88678789 | 0.11321211 |
1,13 | 0.88997067 | 0.11002933 |
1,14 | 0.893082328 | 0,106917672 |
1,15 | 0.896123843 | 0,103876157 |
1,16 | 0.899096203 | 0.100903797 |
1,17 | 0.902000399 | 0.097999601 |
1,18 | 0.904837427 | 0.095162573 |
1,19 | 0.907608286 | 0.092391714 |
1.2 | 0,910313978 | 0,089686022 |
1,21 | 0,912955508 | 0,087044492 |
1,22 | 0,915533881 | 0.084466119 |
1,23 | 0,918050104 | 0.081949896 |
1,24 | 0,920505184 | 0,079494816 |
1,25 | 0,922900128 | 0.077099872 |
1,26 | 0,925235942 | 0.074764058 |
1,27 | 0,927513629 | 0.072486371 |
1,28 | 0,929734193 | 0.070265807 |
1,29 | 0,931898633 | 0.068101367 |
1.3 | 0,934007945 | 0.065992055 |
1,31 | 0,936063123 | 0.063936877 |
1,32 | 0,938065155 | 0.061934845 |
1,33 | 0.940015026 | 0.059984974 |
1,34 | 0,941913715 | 0,058086285 |
1,35 | 0,943762196 | 0.056237804 |
1,36 | 0,945561437 | 0.054438563 |
1,37 | 0,947312398 | 0.052687602 |
1,38 | 0,949016035 | 0.050983965 |
1,39 | 0,950673296 | 0.049326704 |
1.4 | 0.95228512 | 0,04771488 |
1,41 | 0.953852439 | 0,046147561 |
1,42 | 0,955376179 | 0.044623821 |
1,43 | 0.956857253 | 0.043142747 |
1,44 | 0.95829657 | 0.04170343 |
1,45 | 0.959695026 | 0.040304974 |
1,46 | 0,96105351 | 0,03894649 |
1,47 | 0,9623729 | 0,0376271 |
1,48 | 0,963654065 | 0.036345935 |
1,49 | 0,964897865 | 0.035102135 |
1,5 | 0,966105146 | 0.033894854 |
1,51 | 0,967276748 | 0.032723252 |
1,52 | 0,968413497 | 0.031586503 |
1,53 | 0,969516209 | 0.030483791 |
1,54 | 0,97058569 | 0.02941431 |
1,55 | 0,971622733 | 0,028377267 |
1,56 | 0,972628122 | 0.027371878 |
1,57 | 0,973602627 | 0.026397373 |
1,58 | 0,974547009 | 0.025452991 |
1,59 | 0,975462016 | 0.024537984 |
1,6 | 0,976348383 | 0.023651617 |
1,61 | 0,977206837 | 0.022793163 |
1,62 | 0,978038088 | 0.021961912 |
1,63 | 0,97884284 | 0.02115716 |
1,64 | 0,97962178 | 0,02037822 |
1,65 | 0,980375585 | 0.019624415 |
1,66 | 0,981104921 | 0.018895079 |
1,67 | 0,981810442 | 0.018189558 |
1,68 | 0,982492787 | 0.017507213 |
1,69 | 0,983152587 | 0.016847413 |
1,7 | 0,983790459 | 0.016209541 |
1,71 | 0,984407008 | 0.015592992 |
1,72 | 0,985002827 | 0.014997173 |
1,73 | 0,9855785 | 0,0144215 |
1,74 | 0,986134595 | 0.013865405 |
1,75 | 0,986671671 | 0.013328329 |
1,76 | 0,987190275 | 0,012809725 |
1,77 | 0,987690942 | 0.012309058 |
1,78 | 0,988174196 | 0.011825804 |
1,79 | 0,988640549 | 0.011359451 |
1.8 | 0,989090502 | 0.010909498 |
1,81 | 0,989524545 | 0.010475455 |
1,82 | 0,989943156 | 0.010056844 |
1,83 | 0,990346805 | 0.009653195 |
1,84 | 0,990735948 | 0.009264052 |
1,85 | 0,99111103 | 0,00888897 |
1,86 | 0,991472488 | 0.008527512 |
1,87 | 0,991820748 | 0.008179252 |
1,88 | 0,992156223 | 0.007843777 |
1,89 | 0,992479318 | 0.007520682 |
1,9 | 0,992790429 | 0.007209571 |
1,91 | 0,99308994 | 0.00691006 |
1,92 | 0,993378225 | 0.006621775 |
1,93 | 0,99365565 | 0.00634435 |
1,94 | 0,993922571 | 0.006077429 |
1,95 | 0,994179334 | 0.005820666 |
1,96 | 0,994426275 | 0.005573725 |
1,97 | 0,994663725 | 0.005336275 |
1,98 | 0,994892 | 0,005108 |
1,99 | 0,995111413 | 0.004888587 |
2.0 | 0,995322265 | 0.004677735 |
2.01 | 0,995524849 | 0.004475151 |
2.02 | 0,995719451 | 0.004280549 |
2.03 | 0,995906348 | 0.004093652 |
2.04 | 0,99608581 | 0.00391419 |
2,05 | 0,996258096 | 0.003741904 |
2,06 | 0,996423462 | 0.003576538 |
2,07 | 0,996582153 | 0.003417847 |
2,08 | 0,996734409 | 0.003265591 |
2,09 | 0,996880461 | 0.003119539 |
2.1 | 0,997020533 | 0.002979467 |
2.11 | 0,997154845 | 0.002845155 |
2.12 | 0,997283607 | 0.002716393 |
2.13 | 0,997407023 | 0.002592977 |
2.14 | 0,997525293 | 0.002474707 |
2,15 | 0,997638607 | 0.002361393 |
2,16 | 0,997747152 | 0.002252848 |
2,17 | 0,997851108 | 0.002148892 |
2,18 | 0,997950649 | 0.002049351 |
2,19 | 0,998045943 | 0.001954057 |
2.2 | 0,998137154 | 0.001862846 |
2,21 | 0,998224438 | 0.001775562 |
2,22 | 0,998307948 | 0.001692052 |
2,23 | 0,998387832 | 0.001612168 |
2.24 | 0,998464231 | 0.001535769 |
2,25 | 0,998537283 | 0.001462717 |
2,26 | 0,998607121 | 0.001392879 |
2,27 | 0,998673872 | 0.001326128 |
2,28 | 0,998737661 | 0.001262339 |
2,29 | 0,998798606 | 0.001201394 |
2.3 | 0,998856823 | 0.001143177 |
2,31 | 0,998912423 | 0.001087577 |
2,32 | 0,998965513 | 0.001034487 |
2,33 | 0,999016195 | 0.000983805 |
2,34 | 0,99906457 | 0.00093543 |
2,35 | 0,999110733 | 0.000889267 |
2,36 | 0,999154777 | 0.000845223 |
2,37 | 0,99919679 | 0.00080321 |
2,38 | 0,999236858 | 0.000763142 |
2,39 | 0,999275064 | 0.000724936 |
2.4 | 0,999311486 | 0.000688514 |
2,41 | 0,999346202 | 0.000653798 |
2,42 | 0,999379283 | 0.000620717 |
2,43 | 0,999410802 | 0.000589198 |
2,44 | 0,999440826 | 0.000559174 |
2,45 | 0,99946942 | 0.00053058 |
2,46 | 0,999496646 | 0.000503354 |
2,47 | 0,999522566 | 0.000477434 |
2,48 | 0,999547236 | 0.000452764 |
2,49 | 0,999570712 | 0.000429288 |
2,5 | 0,999593048 | 0.000406952 |
2,51 | 0,999614295 | 0.000385705 |
2,52 | 0,999634501 | 0.000365499 |
2,53 | 0,999653714 | 0.000346286 |
2,54 | 0,999671979 | 0.000328021 |
2,55 | 0,99968934 | 0.00031066 |
2,56 | 0,999705837 | 0.000294163 |
2,57 | 0,999721511 | 0.000278489 |
2,58 | 0,9997364 | 0.0002636 |
2,59 | 0,999750539 | 0.000249461 |
2.6 | 0,999763966 | 0.000236034 |
2,61 | 0,999776711 | 0.000223289 |
2,62 | 0,999788809 | 0.000211191 |
2,63 | 0,999800289 | 0.000199711 |
2,64 | 0,999811181 | 0.000188819 |
2,65 | 0,999821512 | 0.000178488 |
2,66 | 0,999831311 | 0.000168689 |
2,67 | 0,999840601 | 0.000159399 |
2,68 | 0,999849409 | 0.000150591 |
2,69 | 0,999857757 | 0.000142243 |
2,7 | 0,999865667 | 0.000134333 |
2,71 | 0,999873162 | 0.000126838 |
2,72 | 0,999880261 | 0.000119739 |
2,73 | 0,999886985 | 0.000113015 |
2,74 | 0,999893351 | 0.000106649 |
2,75 | 0,999899378 | 0.000100622 |
2,76 | 0,999905082 | 9.4918e-05 |
2,77 | 0,99991048 | 8.952e-05 |
2,78 | 0,999915587 | 8.4413e-05 |
2,79 | 0,999920418 | 7.9582e-05 |
2.8 | 0,999924987 | 7.5013e-05 |
2,81 | 0,999929307 | 7.0693e-05 |
2,82 | 0,99993339 | 6.661e-05 |
2,83 | 0,99993725 | 6.275e-05 |
2,84 | 0,999940898 | 5.9102e-05 |
2,85 | 0,999944344 | 5.5656e-05 |
2,86 | 0,999947599 | 5.2401e-05 |
2,87 | 0,999950673 | 4.9327e-05 |
2,88 | 0,999953576 | 4.6424e-05 |
2,89 | 0,999956316 | 4.3684e-05 |
2,9 | 0,999958902 | 4.1098e-05 |
2,91 | 0,999961343 | 3.8657e-05 |
2,92 | 0,999963645 | 3.6355e-05 |
2,93 | 0,999965817 | 3.4183e-05 |
2,94 | 0,999967866 | 3.2134e-05 |
2,95 | 0,999969797 | 3.0203e-05 |
2,96 | 0,999971618 | 2.8382e-05 |
2,97 | 0,999973334 | 2.6666e-05 |
2,98 | 0,999974951 | 2.5049e-05 |
2,99 | 0,999976474 | 2.3526e-05 |
3.0 | 0,99997791 | 2.209e-05 |
3.01 | 0,999979261 | 2.0739e-05 |
3.02 | 0,999980534 | 1.9466e-05 |
3.03 | 0,999981732 | 1.8268e-05 |
3.04 | 0,999982859 | 1.7141e-05 |
3.05 | 0,99998392 | 1.608e-05 |
3.06 | 0,999984918 | 1.5082e-05 |
3.07 | 0,999985857 | 1.4143e-05 |
3.08 | 0,99998674 | 1.326e-05 |
3.09 | 0,999987571 | 1.2429e-05 |
3.1 | 0,999988351 | 1.1649e-05 |
3.11 | 0,999989085 | 1.0915e-05 |
3.12 | 0,999989774 | 1.0226e-05 |
3.13 | 0,999990422 | 9.578e-06 |
3.14 | 0,99999103 | 8.97e-06 |
3.15 | 0,999991602 | 8.398e-06 |
3.16 | 0,999992138 | 7.862e-06 |
3.17 | 0,999992642 | 7.358e-06 |
3.18 | 0,999993115 | 6.885e-06 |
3.19 | 0,999993558 | 6.442e-06 |
3.2 | 0,999993974 | 6.026e-06 |
3.21 | 0,999994365 | 5.635e-06 |
3.22 | 0,999994731 | 5.269e-06 |
3.23 | 0,999995074 | 4.926e-06 |
3.24 | 0,999995396 | 4.604e-06 |
3,25 | 0,999995697 | 4.303e-06 |
3.26 | 0,99999598 | 4.02e-06 |
3,27 | 0,999996245 | 3.755e-06 |
3,28 | 0,999996493 | 3.507e-06 |
3.29 | 0,999996725 | 3.275e-06 |
3.3 | 0,999996942 | 3.058e-06 |
3,31 | 0,999997146 | 2.854e-06 |
3,32 | 0,999997336 | 2.664e-06 |
3,33 | 0,999997515 | 2.485e-06 |
3,34 | 0,999997681 | 2.319e-06 |
3,35 | 0,999997838 | 2.162e-06 |
3,36 | 0,999997983 | 2.017e-06 |
3,37 | 0,99999812 | 1.88e-06 |
3,38 | 0,999998247 | 1.753e-06 |
3,39 | 0,999998367 | 1.633e-06 |
3.4 | 0,999998478 | 1.522e-06 |
3,41 | 0,999998582 | 1.418e-06 |
3,42 | 0,999998679 | 1.321e-06 |
3,43 | 0,99999877 | 1.23e-06 |
3,44 | 0,999998855 | 1.145e-06 |
3,45 | 0,999998934 | 1.066e-06 |
3,46 | 0,999999008 | 9.92e-07 |
3,47 | 0,999999077 | 9.23e-07 |
3,48 | 0,999999141 | 8.59e-07 |
3,49 | 0,999999201 | 7.99e-07 |
3,5 | 0,999999257 | 7.43e-07 |
Reference this content, page, or tool as:
"Calculatrice de fonction d'erreur complémentaire" at https://miniwebtool.com/fr/complementary-error-function-calculator/ from miniwebtool, https://miniwebtool.com/
You can also try our new AI Math Solver to solve your math problems through natural language question and answer.
Autres outils connexes:
Calculatrice de fonction d'erreurOpérations mathématiques avancées:
- Calculatrice Antilog
- Calculatrice de la fonction bêta
- Calculateur de coefficient binomial
- Calculatrice de bit
- Calculatrice combinée
- Calculatrice de fonction d'erreur complémentaire
- Calculateur de nombres complexes
- Calculatrice de fonction d'erreur
- Calculatrice de désintégration exponentielle (Haute précision)
- Calculatrice de croissance exponentielle (Haute précision)
- Calculatrice intégrale exponentielle
- Calculatrice des exposants (Haute précision) Featured
- Calculatrice Factorielle Featured
- Calculatrice de fonction gamma
- Calculateur de Nombre d'Or Featured
- Calculatrice de demi
- Calculatrice du taux de croissance en pourcentage Featured
- Calculatrice de permutation
- Calculatrice des proportions Featured
- Calculatrice de formule quadratique Featured
- Calculatrice de notation scientifique Featured
- Calculatrice de somme de cubes
- Calculatrice de la somme des entiers positifs
- Calculatrice de la somme des carrés