体积计算器
计算 11 种不同 3D 形状的体积,包括球体、圆柱体、圆锥体、正方体、长方体、三棱柱、金字塔、正四面体、椭球体、圆环体和圆台。获取带有详细逐步解决方案的即时结果。
检测到广告拦截,导致我们无法展示广告
MiniWebtool 依靠广告收入免费提供服务。如果这个工具帮到了你,欢迎开通 Premium(无广告 + 更快),或将 MiniWebtool.com 加入白名单后刷新页面。
- 或升级 Premium(无广告)
- 允许 MiniWebtool.com 显示广告,然后刷新
体积计算器
欢迎使用体积计算器,这是计算 11 种不同 3D 几何形状体积的综合工具。无论您是需要计算球体、圆柱体、圆锥体、正方体的体积,还是圆环体和圆台等更复杂的形状,此计算器都能提供即时结果,并附带详细的逐步解决方案和可视化图表。
支持的 3D 形状
| 形状 | 体积公式 | 参数 |
|---|---|---|
| 球体 | \( V = \frac{4}{3}\pi r^3 \) | 半径 (r) |
| 圆柱体 | \( V = \pi r^2 h \) | 半径 (r), 高度 (h) |
| 圆锥体 | \( V = \frac{1}{3}\pi r^2 h \) | 半径 (r), 高度 (h) |
| 正方体 | \( V = a^3 \) | 边长 (a) |
| 长方体 | \( V = l \times w \times h \) | 长, 宽, 高 |
| 三棱柱 | \( V = \frac{1}{2}bhl \) | 底, 高, 长度 |
| 正四棱锥 | \( V = \frac{1}{3}a^2 h \) | 底边 (a), 高度 (h) |
| 正四面体 | \( V = \frac{a^3}{6\sqrt{2}} \) | 棱长 (a) |
| 椭球体 | \( V = \frac{4}{3}\pi abc \) | 半轴 (a, b, c) |
| 圆环体 | \( V = 2\pi^2 Rr^2 \) | 大半径 (R), 小半径 (r) |
| 圆台 | \( V = \frac{1}{3}\pi h(r_1^2 + r_1r_2 + r_2^2) \) | 顶半径, 底半径, 高度 |
如何使用此计算器
- 选择形状: 点击形状卡片之一,选择您想要计算的 3D 形状。
- 输入尺寸: 输入所需的测量值(半径、高度、长度等)。
- 计算: 点击“计算体积”按钮获取结果。
- 查看: 查看体积、表面积(如果适用)和逐步解决方案。
了解体积
体积是封闭表面内包围的三维空间的量。它告诉我们一个物体占用多少空间或它可以容纳多少。体积以立方单位测量,例如:
- 立方米 (m³)
- 立方厘米 (cm³)
- 升 (L) - 1 L = 1000 cm³
- 立方英尺 (ft³)
- 立方英寸 (in³)
体积公式解析
球体体积
球体是一种完美的圆形 3D 形状,表面上的每个点到中心的距离都相等。体积仅取决于半径。
圆柱体体积
圆柱体有两个平行的圆形底面,由一个曲面连接。其体积等于底面积乘以高度。
圆锥体体积
圆锥体有一个圆形底面,向一个点(顶点)逐渐缩小。其体积正好是底面积和高度相同的圆柱体体积的三分之一。
常见问题
几何学中的体积是什么?
体积是封闭表面内包围的三维空间的量。它以立方单位测量,如立方米 (m³)、立方厘米 (cm³)、升或立方英尺。体积告诉你一个物体占用多少空间或它能容纳多少。
如何计算球体的体积?
球体的体积使用公式 V = (4/3)πr³ 计算,其中 r 是半径。例如,半径为 5 的球体体积为 V = (4/3)π(5)³ = (4/3)π(125) ≈ 523.6 立方单位。
正方体和长方体有什么区别?
正方体是长方体的一种特殊情况,其所有六个面都是相等的正方形(长 = 宽 = 高)。长方体(矩形棱柱)具有矩形面,尺寸可以不同。正方体体积为 a³,而长方体体积为 长 × 宽 × 高。
如何求圆锥体的体积?
圆锥体的体积为 V = (1/3)πr²h,其中 r 是圆形底面的半径,h 是高度。该公式表明,圆锥体的体积正好是具有相同底面和高度的圆柱体体积的三分之一。
其他资源
引用此内容、页面或工具为:
"体积计算器" 于 https://MiniWebtool.com/zh-cn/体积计算器/,来自 MiniWebtool,https://MiniWebtool.com/
由 miniwebtool 团队。更新日期:2026年1月19日
您还可以尝试我们的 AI数学解题器 GPT,通过自然语言问答解决您的数学问题。