Kalkulator Współczynnika Sharpe
Oblicz współczynnik Sharpe’a, aby zmierzyć stopę zwrotu z inwestycji skorygowaną o ryzyko. Analizuj wyniki portfela dzięki obliczeniom krok po kroku, interaktywnym wykresom i profesjonalnemu benchmarkingowi.
Blokada reklam uniemożliwia wyświetlanie reklam
MiniWebtool jest darmowy dzięki reklamom. Jeśli to narzędzie Ci pomogło, wesprzyj nas przez Premium (bez reklam + szybciej) albo dodaj MiniWebtool.com do wyjątków i odśwież stronę.
- Albo przejdź na Premium (bez reklam)
- Zezwól na reklamy dla MiniWebtool.com, potem odśwież
O Kalkulator Współczynnika Sharpe
Witaj w kalkulatorze współczynnika Sharpe'a, profesjonalnym narzędziu do analizy inwestycyjnej, które mierzy wyniki portfela skorygowane o ryzyko. Niezależnie od tego, czy oceniasz fundusze inwestycyjne, fundusze ETF, poszczególne akcje czy złożone portfele, ten kalkulator zapewnia kompleksową analizę z obliczeniami krok po kroku, interaktywnymi wizualizacjami i profesjonalną oceną wyników.
Co to jest współczynnik Sharpe'a?
Współczynnik Sharpe'a, opracowany przez laureata Nagrody Nobla Williama F. Sharpe'a w 1966 roku, jest złotym standardem pomiaru stóp zwrotu z inwestycji skorygowanych o ryzyko. Odpowiada na fundamentalne pytanie: Ile dodatkowego zwrotu zarabiam za dodatkowe ryzyko, które podejmuję?
W przeciwieństwie do surowych stóp zwrotu, które mogą być mylące, współczynnik Sharpe'a uwzględnia zmienność (ryzyko) i porównuje wyniki z alternatywą wolną od ryzyka. Dzięki temu jest nieoceniony przy porównywaniu inwestycji o różnych profilach ryzyka na równych zasadach.
Wzór na współczynnik Sharpe'a
Gdzie:
- Rp = Oczekiwana stopa zwrotu z portfela (zannualizowana)
- Rf = Stopa wolna od ryzyka (zazwyczaj rentowność bonów skarbowych)
- σp = Odchylenie standardowe portfela (zmienność)
Zrozumienie wartości współczynnika Sharpe'a
Współczynnik Sharpe'a informuje o tym, ile nadmiarowego zwrotu otrzymujesz za każdą jednostkę ryzyka:
| Współczynnik Sharpe'a | Ocena | Interpretacja |
|---|---|---|
| ≥ 3.0 | Wyjątkowy (A+) | Wybitne wyniki skorygowane o ryzyko, rzadkie w praktyce |
| 2.0 - 3.0 | Doskonały (A) | Bardzo silne zwroty w stosunku do ryzyka, fundusze z najwyższej półki |
| 1.0 - 2.0 | Dobry (B) | Solidne wyniki, akceptowalne dla większości inwestorów |
| 0.5 - 1.0 | Umiarkowany (C) | Przeciętne zwroty jak na dany poziom ryzyka, rozważ alternatywy |
| 0 - 0.5 | Słaby (D) | Niskie nadmiarowe zwroty w stosunku do podjętego ryzyka |
| < 0 | Ujemny (F) | Aktywo wolne od ryzyka poradziłoby sobie lepiej |
Jak korzystać z tego kalkulatora
Tryb Prosty
Użyj Trybu Prostego, gdy masz już statystyki podsumowujące dla swojego portfela:
- Oczekiwana stopa zwrotu z portfela: Wprowadź roczną stopę zwrotu z portfela w procentach (np. 12,5%)
- Stopa wolna od ryzyka: Wprowadź aktualną rentowność bonów skarbowych lub stopę oszczędności (np. 4,5%)
- Odchylenie standardowe: Wprowadź zannualizowaną zmienność portfela (np. 18%)
Tryb Zaawansowany
Użyj Trybu Zaawansowanego, gdy posiadasz historyczne dane o zwrotach:
- Wprowadź zwroty okresowe: Podaj swoje miesięczne, kwartalne lub roczne stopy zwrotu
- Wybierz typ okresu: Wybierz częstotliwość danych o zwrotach
- Kalkulator automatycznie: Obliczy średnią stopę zwrotu i odchylenie standardowe, zannualizuje oba wskaźniki i obliczy współczynnik Sharpe'a
Wybór odpowiedniej stopy wolnej od ryzyka
Stopa wolna od ryzyka reprezentuje zwrot, który można zarobić przy zerowym ryzyku. Typowe wybory obejmują:
- 3-miesięczne bony skarbowe: Najlepsze do analiz krótkoterminowych
- 10-letnie obligacje skarbowe: Odpowiednie dla inwestycji długoterminowych
- Konto oszczędnościowe o wysokim oprocentowaniu: Alternatywa dla portfeli osobistych
W latach 2024-2025 stopy zwrotu z obligacji skarbowych USA wahają się od około 4% do 5%.
Annualizacja zwrotów i zmienności
Podczas pracy z danymi okresowymi, annualizacja zapewnia sprawiedliwe porównanie:
Gdzie n to liczba okresów w roku (12 dla miesięcznych, 4 dla kwartalnych).
Zastosowania praktyczne
Porównanie portfeli
Porównaj dwa portfele o różnych poziomach ryzyka:
- Portfel A: 15% zwrotu, 20% zmienności → Sharpe = (15-4,5)/20 = 0,525
- Portfel B: 10% zwrotu, 10% zmienności → Sharpe = (10-4,5)/10 = 0,55
Pomimo niższych surowych zwrotów, Portfel B ma lepsze wyniki skorygowane o ryzyko.
Wybór funduszu
Wybierając między funduszami inwestycyjnymi lub ETF-ami o podobnych celach, preferuj fundusze z wyższymi współczynnikami Sharpe'a, ponieważ zapewniają one lepsze zwroty na jednostkę ryzyka.
Atrybucja wyników
Spadający współczynnik Sharpe'a może wskazywać, że zarządzający podejmuje nadmierne ryzyko lub że warunki rynkowe uległy zmianie, co sugeruje konieczność przeglądu portfela.
Ograniczenia współczynnika Sharpe'a
Mimo powszechnego stosowania, współczynnik Sharpe'a ma istotne ograniczenia:
- Zakłada rozkład normalny: Może niedoceniać ryzyka w przypadku aktywów o skośnych zwrotach lub grubych ogonach
- Traktuje całą zmienność jednakowo: Nie odróżnia zmienności wzrostowej od spadkowej
- Patrzy wstecz: Oparty na danych historycznych, może nie przewidywać przyszłych wyników
- Wrażliwy na ramy czasowe: Wyniki mogą się znacznie różnić w zależności od okresu analizy
- Ryzyko manipulacji: Może być sztucznie zawyżony przez rzadkie wyceny lub wygładzone zwroty
Rozważ użycie współczynnika Sortino w przypadku inwestycji o asymetrycznych zwrotach, ponieważ skupia się on wyłącznie na zmienności spadkowej.
Często zadawane pytania
Co to jest współczynnik Sharpe'a?
Współczynnik Sharpe'a, opracowany przez laureata Nagrody Nobla Williama F. Sharpe'a, mierzy efektywność inwestycji skorygowaną o ryzyko poprzez obliczenie nadmiarowej stopy zwrotu na jednostkę ryzyka (zmienności). Pomaga inwestorom zrozumieć, czy zyski z portfela wynikają z mądrych decyzji inwestycyjnych, czy z nadmiernego podejmowania ryzyka. Wyższy współczynnik Sharpe'a wskazuje na lepsze stopy zwrotu skorygowane o ryzyko.
Jaki jest wzór na współczynnik Sharpe'a?
Wzór na współczynnik Sharpe'a to: Współczynnik Sharpe'a = (Rp - Rf) / σp, gdzie Rp to oczekiwana stopa zwrotu z portfela, Rf is stopa wolna od ryzyka (zazwyczaj rentowność bonów skarbowych), a σp to odchylenie standardowe portfela (zmienność). Wynik mówi o tym, ile dodatkowego zwrotu otrzymujesz za dodatkową zmienność wynikającą z posiadania ryzykownego aktywa.
Jaki współczynnik Sharpe'a jest dobry?
Współczynnik Sharpe'a powyżej 1,0 jest ogólnie uważany za akceptowalny, powyżej 2,0 za bardzo dobry, a powyżej 3,0 za doskonały. Współczynnik poniżej 1,0 wskazuje, że inwestycja może nie rekompensować odpowiednio podejmowanego ryzyka. Ujemny współczynnik Sharpe'a oznacza, że aktywa wolne od ryzyka poradziłyby sobie lepiej. Większość funduszy inwestycyjnych ma współczynniki Sharpe'a od 0,5 do 1,5.
Jaką stopę wolną od ryzyka należy zastosować?
Stopa wolna od ryzyka to zazwyczaj rentowność rządowych bonów skarbowych lub obligacji dopasowanych do horyzontu inwestycyjnego. Dla inwestorów w USA powszechnym wyborem jest 3-miesięczna stopa bonów skarbowych dla analiz krótkoterminowych lub 10-letnia rentowność obligacji skarbowych dla inwestycji długoterminowych. Na przełomie lat 2024-2025 stawki te wahają się w granicach 4-5%.
Jak zannualizować współczynnik Sharpe'a z miesięcznych zwrotów?
Aby zannualizować współczynnik Sharpe'a na podstawie danych miesięcznych: pomnóż średnią miesięczną stopę zwrotu przez 12, aby uzyskać zannualizowaną stopę zwrotu, pomnóż miesięczne odchylenie standardowe przez pierwiastek z 12 (około 3,46), aby uzyskać zannualizowaną zmienność, a następnie oblicz współczynnik Sharpe'a, korzystając z tych zannualizowanych wartości i rocznej stopy wolnej od ryzyka.
Jakie są ograniczenia współczynnika Sharpe'a?
Współczynnik Sharpe'a ma kilka ograniczeń: zakłada, że zwroty mają rozkład normalny (co może nie dotyczyć wszystkich inwestycji), traktuje zmienność w górę i w dół jednakowo, może być manipulowany przez rzadkie wyceny i może dawać mylące wyniki dla inwestycji o nieregularnych wzorcach zwrotu. Rozważ użycie współczynnika Sortino dla inwestycji o asymetrycznych zwrotach.
Dodatkowe zasoby
Cytuj ten materiał, stronę lub narzędzie w następujący sposób:
"Kalkulator Współczynnika Sharpe" na https://MiniWebtool.com/pl/kalkulator-współczynnika-sharpe/ z MiniWebtool, https://MiniWebtool.com/
przez zespół miniwebtool. Aktualizacja: 25 stycznia 2026
Inne powiązane narzędzia:
Kalkulatory Inwestycyjne:
- Kalkulator Wyceny Opcji Blacka-Scholesa Nowy
- Kalkulator wydanego kapitału
- Kalkulator Oszczędności z Kapitalizacją Nowy
- Kalkulator Kosztu Kapitału Własnego
- Kalkulator zniesienia Fibonacciego
- Kalkulator IRR Nowy
- Kalkulator NPV Nowy
- Kalkulator Zysku z Opcji Nowy
- Kalkulator okresu zwrotu Nowy
- kalkulator oszczędności
- Kalkulator Współczynnika Sharpe
- Kalkulator WACC
- Kalkulator Zysku ze Sprzedaży Krótkiej Nowy
- Kalkulator rozszerzenia Fibonacciego Nowy
- Kalkulator Stop Loss i Take Profit Nowy